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Abstract 
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Analysing the Difference between Forward and Futures Prices 
for the UK Commercial Property Market 

1. Introduction 

The difference between forward and futures prices has been given considerable attention in the 

finance literature, both from a theoretical as well as from an empirical perspective, and for 

various underlying assets. On the theoretical side, Cox, Ingersoll and Ross (1981) (CIR) obtained 

a relationship between forward and futures prices based solely on no-arbitrage arguments1. A 

series of papers subsequently tested empirically the CIR result(s). Cornell and Reinganum (1981) 

investigated whether the difference between forward and futures prices in the foreign exchange 

market is different from zero. For several maturities and currencies, they found that the average 

forward-futures difference is not statistically different from zero. Furthermore, they reported 

very small values of the sample covariance between futures prices and discount bonds and 

concluded that their empirical findings are in agreement with CIR’s theoretical results. In 

addition, they suggested that earlier studies identifying significant forward-futures differences for 

the Treasury bill markets ought to seek explanations elsewhere than in the CIR framework, since 

the corresponding covariance terms for this market were even smaller. French (1983) reported 

significant differences between forward and futures prices for copper and silver. Moreover, he 

conducted a series of empirical tests of the CIR theoretical framework and concluded that his 

results are in partial agreement with this theory. Park and Chen (1985) also investigated the 

forward-futures differences for a number of foreign currencies and commodities and they 

pointed out to significant differences for most of the commodities they analysed, but not for the 

foreign currencies. Also, their empirical tests confirmed that the majority of the average forward-

futures price differences are in accordance with the CIR result. 

Kane(1980) tried to explain the differences between futures and forward prices based on market 

imperfections such as asymmetric taxes and contract performance guarantees.  Levy (1989) 

strongly argued that the difference between forward and futures prices arises from the marked-

to-market process of the futures contract. Meulbroek (1992) investigated further the relationship 

between forward and futures prices on the Eurodollar market and suggested that the marked-to-

market effect has a large influence. However, Grinblatt and Jegadeesh (1996) advocated that the 

difference between the futures and forward Eurodollar rates due to marking-to-market is small. 

                                                 
1 Other early studies that considered the relationship between forward and futures prices in a perfect market 
without taxes and transaction costs are Margrabe(1978), Jarrow and Oldfield (1981) and Richard and Sundaresan 
(1981). 
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Alles and Peace (2001) concluded that the 90-day Australia futures prices and the implied 

forwards are not fully supported by the CIR model. Recently, Wimschulte (2010) showed that 

there is no significant statistical or economical evidence for price differences between electricity 

futures and forward contracts.  

The relationship between forward and futures prices as developed under the CIR model makes 

the tacit assumption that futures are infinitely divisible.  Levy (1989) starts with the same set of 

assumptions underpinning the CIR model except one. When considering interest rates, he 

advocates that, if only the next day’s interest rate were deterministic, a perfect hedge ratio using 

fractional futures positions can be constructed to replicate the forward. Thus, for Levy (1989) it 

is only the interest rate for the next day that is important and not the entire time path of the 

stochastic rates. Consequently, for Levy (1989), the forward prices should be equal to futures 

prices and any empirical findings regarding actual price differentials can have only statistical 

explanations and they are non-systematic. On the other hand, Morgan (1981) studied the 

forward-futures differential assuming that capital markets are efficient and so concludes that 

forward and futures prices must be different. His conclusion is mainly based on the fact that 

current futures price depends on the joint future evolution of stochastic interest rates and futures 

prices. Polakoff and Diz (1992) argued that due to the indivisibility of the futures contracts2, the 

forward prices should be different from futures prices even when interest rates and futures 

prices exhibit zero local covariances. Moreover, they show that the autocorrelation in the time 

series of the forward-futures price differences should be expected. Hence, testing must take into 

consideration the presence of autocorrelation. Polakoff and Diz (1992) offered a theoretical 

explanation that unifies the contradictory theoretical views originated in how interest rates are 

negociated in the model. Their main conclusion is that it is unnecessary for futures prices and 

interest rates to be correlated in order to imply that forward prices should be different from 

futures prices. 

From the review discussed above it appears that the empirical evidence is mixed and asset class 

specific.  Property derivatives are an emerging asset class of considerable importance for 

financial systems.  Case and Shiller (1989, 1990) found evidence of positive serial correlation as 

well as inertia in house prices and excess returns. This implied that the U.S. market for single-

family homes is inefficient. The use of derivatives for risk management in real estate markets has 

been discussed by Case et.al. (1993), Case and Shiller (1996), Shiller and Weiss (1999) with 

                                                 
2 Although the vast majority of literature on futures is based on the assumption of infinite divisibility, Polakoff 
(1991) discusses the important role played by the indivisibility of futures contracts. 
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respect to futures and options.  Fisher (2005) discussed NCREIF-based swap products, while 

Shiller (2008) described the role played by the derivatives markets in general for home prices. 

For real-estate there has been a perennial lack of developments of derivatives products that 

could have been used for hedging price risk. The only property derivatives traded more liquidly 

in U.S. and U.K are the total return swaps (TRS), forward and futures.  In the U.K. commercial 

property sector for example, all three types of contract have the Investment Property Databank 

(IPD) index as the underlying. Since February 2009 the European Exchange (Eurex) has listed 

the UK property index futures. The most liquid derivatives markets on IPD UK index are the 

TRS, which is an over-the-counter market, and the futures, both with five yearly market calendar 

December maturities. Any portfolio of TRS contracts can be decomposed into an equivalent 

portfolio of forward contracts. Hence, having data on TRS prices and futures prices opens the 

opportunity to compare, after some financial engineering, forward curves with futures curves on 

the IPD index. As remarked by Polakoff and Diz (1992) it is difficult to compare forward and 

futures prices on a daily basis when forwards are traded on a non-synchronous basis. By 

contrast, when forwards are derived on an implied basis from other instruments then matching 

the term-to-delivery is easy. 

In this paper we investigate the forward-futures price differences for the UK commercial 

property market for all five end of the year market maturities. To our knowledge, this is the first 

study that considers the forward - futures price differences for this important asset class. 

Furthermore, all previous studies relied exclusively on time series analysis, whereas we take a step 

further and also conduct statistical tests for panel data.  

The remainder of the paper is organised as follows: Section 2 next contains the modelling 

approach taken for the commercial property index, Section 3 focuses on describing the data and 

the testing methodology, Section 4 describes the alternative estimation methods for the 

proposed models and Section 5 presents our empirical findings. Section 6 concludes and finally 

some of the theoretical properties of the models described in Section 2 as well as a series of 

derivations are included in the Appendices. 
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2. Modelling the Relationship between Forwards and Futures 

Let  S t  be the spot value of the IPD index at time - t,  iF t ,T , the associated time-t forward 

price with maturity Ti,  if t ,T  the time-t futures price with maturity Ti and  iD t ,T  the 

stochastic discount factor at time t for maturity Ti. Then      Q

i t iB t ,T E D t ,T  is the time-t 

zero-coupon bond price, with maturity Ti, where the expectation is taken under a risk-neutral 

measure Q.  

There is a model-free relationship between forward and futures prices given by:3 

    
    

  
 

Q

t

Q

t

cov S T ,D t ,T
F t ,T f t ,T

E D t ,T
 (1) 

which holds for any maturity T and at any time 0 ≤ t ≤ T, and where Q is a risk-neutral pricing 

measure. This fundamental relationship opens up the first line of investigation by testing whether 

the differences between forward and futures prices are statistically different from zero. Later on 

we shall investigate several models and estimation methods for the IPD index to see which ones 

best captures the IPD forward-futures price difference.  

 

2.1 Mean-reverting models 

Empirical properties of real-estate indices suggest that the family of mean-reverting models 

presented in Lo and Wang (1995) could be suitable for defining our modelling framework. Shiller 

and Weiss (1999) pointed out that the models advocated in Lo and Wang (1995) may not be 

appropriate for real-estate derivatives since the underlying asset is not costlessly tradable, and 

they advocated using a lognormal model combined with an expected rate of return rather than a 

riskless rate. Nevertheless, Fabozzi et. al (2011) designed a way to merge the best of the two 

worlds by completing the market with the futures contracts that are used directly to calibrate the 

market price of risk for the real-estate index and hence, indirectly fixing also the risk-neutral 

pricing measure which can be then applied for pricing other derivatives. 

Real-estate prices exhibit serial correlation leading to a high degree of predictability, up to 50% 

R-squared for a short term horizon. Moreover, it has been documented that returns on real-

estate indices are positively autocorrelated over short horizons and negatively correlated over 

                                                 
3 See Shreve (2004), p. 247. 
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longer horizons, see Fabozzi et.al. (2011). A reasonable theoretical explanation of serial 

correlation for real-estate indices can be drawn from Polakoff and Diz (1992) since real-estate 

trades are not infinitely divisible neither in the spot market nor in the futures market. 

Furthermore, mean reversion is a characteristic that has a financial economics basis in 

commodity markets. Real-estate is viewed partly as a commodity although it also retains some 

characteristics of other investment financial assets.  

We consider a slight variation of the trending OU process presented in Lo and Wang (1995), as 

follows: let     p t ln S t ;        0μ μp t q t t ,4 where the dynamics of q(t) under the 

physical measure P are: 

        γ σdq t q t dt dW t  (2) 

where   0γ 0 σ 0 μ μ, , , R.  The standard solution for the OU process given by (2) leads to the 

closed form solution 

           


          0 0
0

μ μ 0 μ γ σ γ
t

v

p t t p exp t exp t v dW v  (3) 

for any 0 t T .   This model is very flexible and allows the study of logarithmic returns. The 

continuously compounded τ-period returns, computed at time t, are defined as

       τ τr t p t p t . Following similar moment calculations as in Lo and Wang (1995), we get 

the autocorrelations,  

         τ 1 τ 2 2 1

1
γ τ 1 γτ 0

2
univcorr r t , r t exp t t exp ,               (4) 

for any 1 2 and τt , t , such that5  1 2 τt t .  The models investigated in this paper are applied to 

price futures on the IPD index. This market is inherently incomplete given the fact that trading 

in the underlying index is not possible and the main role played by the futures contracts is to 

complete the market. From a technical point of view we need to consider the market price of 

risk η into our models and calibrate this important parameter from the market futures prices. 

This procedure will help to identify a risk-neutral pricing measure and then other derivatives on 

the same index can be priced under this measure consistently. The corresponding equation for 

p(t) under the real-measure P is: 

                                                 
4 To simplify notation, we suppress model subscripts, univ and biv for the univariate and bivariate models, 
respectively, unless where absolutely necessary. 
5 This condition ensures that returns are non-overlapping. 
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               0μ γ μ μ σdp t p t t dt dW t ,  (5) 

and upon risk neutralization it becomes: 

                0μ γ μ μ ησ σ Qdp t p t t dt dW t  (6) 

The solution to this modified equation is similar to (3): 

             0 0
0

ησ ησ
μ μ μ γ γ 0 σ γ

γ γ

t
Q

v

p t t exp t exp t p exp t v dW v


 
           

 
 (7)

for any 0 t T .   Given the normality of p(t) the theoretical futures prices can be calculated in 

closed-form: 

 

        

         

0 0

2

0 0

0

σ ησ ησ
μ μ μ γ γ 0 1 2γ

4γ γ γ

Q Q

univ ,univ ,univf ,T E S T E exp p T

exp T exp T exp T ln S exp T

 

  
            

  

 

  (8) 

As remarked in Lo and Wang (1995), although this specification is a valid modelling starting 

point, it has an important disadvantage in that the autocorrelation coefficients of continuously 

compounded τ-period returns can only take negative values6.  

A more flexible approach, also proposed in Lo and Wang (1995), is the bivariate trending OU 

process, a natural extension of the univariate version above. Here we implement the following 

version of their model: 

             γ λ σ Sdq t q t r t dt dW t  (9) 

       δ μ σr r rdr t r t dt dW t    (10) 

where      ρS rdW t dW t dt and the second stochastic factor on which the log-price of the 

underlying depends is the short interest rate r(t). The solution to equation (10) is: 

            
0

μ δ 0 μ σ δ
t

r r r r
v

r t exp t r exp t v dW v


        (11) 

                                                 
6 See expression (4). 
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for any 0 t T .   Combining (11) and (9) gives the analytical solution for the log of the 

underlying index value:

                

            

0 0

0 0

μ λ λ
μ μ γ 0 μ 1 γ 0 μ δ γ

γ γ δ

λσ
δ γ σ γ

γ δ

r
r

t t
r

r s
v v

p t t exp t p exp t r exp t exp t

exp t v exp t v dW v exp t v dW v
 

              

           

            (12) 

As detailed in Appendix A, we obtain that under the risk neutral measure Q:  

           1 1
0

0 δ σ δ
t

Q

bi var r r
v

r t C r C exp t e t v dW v


           (13) 

with  2

1 1 2

σ
μ ρη 1 ρ η

δ

r
rC     , and 

 

          

 
 

   

       





 
          

 

 
             

  
           

1 1
0 0

0

11

0

ση ση
μ μ 0 μ γ σ γ

γ γ

0
1 γ δ γ

γ γ δ
λ

σ
δ γ

γ δ

t
Q

s
v

t
Qr

r
v

p t t p exp t exp t v dW v

r CC
exp t exp t exp t

.

exp t v exp t v dW v

 (14) 

The futures price for maturity T can be easily derived now as:  

       
 2

0 2

σ
0

2

yQ

bi var ,bi varf ,T E S exp C
T

T T
 

    
 

 (15) 

where  

      

  
 

    

 
      

 

 
       

 

1 1
2 0

11

ση ση
μ μ 0 γ

γ γ

0
λ 1 γ δ γ

γ γ δ

C T ln p exp T

r CC
exp T exp T  exp T

T

 

and  
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    
 

       

    

     
      

 
 

     
  

   

22
2

2

2 1 γ δ1 2γ1 2δλσσ
σ 1 2γ

2γ 2δ 2γ γ δγ δ

1 γ δ 1 2γ2ρλσσ

γ δ γ δ 2γ

r
y

r

exp Texp Texp T
exp T

exp T ex T

T

p

 

The expression for the correlation of τ-period returns     τ 1 τ 2bi varcorr r t ,r t  for any 1 2 and τt , t ,

such that 1 2 τt t ,  is more involved and thus excluded here. However, it can be shown that for 

certain values of the model parameters, the bivariate model, unlike the univariate model outlined 

above, is more flexible and can allow for both positive and negative autocorrelations.  

3. Data and Testing Methodology 

For our empirical analysis of the differences between the forward and futures prices on the IPD7 

UK property index we perform two types of tests. Firstly, we investigate whether the observed 

difference between the forward and futures prices is statistically different from zero. Secondly, 

we test which of a number of established continuous time models combined with various 

methods of estimation is able to best capture this difference. Using the previously defined 

notation, we have: n = 5 different maturities and N = 71 daily observations for each maturity.  

3.1 Data 

The data needed for our study contains IPD property futures prices, the IPD total return swap 

(TRS) rates, the IPD index, and also the GBP interest rates needed to calculate discount factors. 

Futures prices have been obtained from the European Exchange (Eurex8), the property TRS data 

(the fixed rate) has been provided by Tradition Group, a major dealer on this market and the 

IPD index was sourced from the Investment Property Databank (IPD9). In addition, the UK’s 

interest rates have been downloaded from Datastream. Due to the availability of the property 

futures and TRS data, the sample period used is daily from 4 February 2009 until 7 July 2009. It 

generates 71 property futures daily curves and 71 sets of TRS rates with up to five years maturity 

(the first maturity date is 31 December 2009, the second maturity date is 31 December 2010, the 

                                                 
7IPD stands for Investment Property Databank. A detailed description of the data is given in Section 3.1 
below. 
8 See www.eurexchange.com for more information on Eurex. IPD UK futures contracts started on 4 
February 2009. 
9 See www.ipd.com for more information on IPD. 

http://www.eurexchange.com/
http://www.ipd.com/
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third maturity date is 31 December 2011, the fourth maturity date is 31 December 2012, and the 

fifth maturity date is 31 December 2013).       

The evolution of the TRS series is depicted in Figure 1 and we could see that, for our period of 

investigation, most of the IPD TRS rates are negative for the first, second, and third maturity 

dates.  For the fourth and fifth maturity dates, the values are higher or mostly positive. In 

addition, there is a dramatic increase of the fixed rate at the end of February 2009, possibly due 

to the rollover off the futures contracts in March combined with the publication of the IPD 

index for the year ending in December 2008. The property futures prices are illustrated in Figure 

2. The property futures prices are quoted on a total return basis. 

INSERT FIGURE 1 HERE 

INSERT FIGURE 2 HERE 

The descriptive statistics of the TRS rates are reported in Table 1. The mean values are mostly 

negative; the mean for the first maturity date is -17.80% and the means are increasing with 

maturity. The excess kurtosis is negative for all five futures contracts and the first year TRS  

contract and it is positive for the remaining four series of TRS rates. The skewness values have 

negative signs, except for the four year futures contract, implying that the distributions of the 

data are skewed to the left.  

INSERT TABLE 1 HERE 

It could be seen in Table 1 that the futures contract for the fifth maturity date appears to have 

the highest mean. The highest standard deviation is showed in the futures contract for the 

second maturity date. Similarly to TRS data, futures prices exhibit skewness and fat tails 

characteristics. 

From the daily TRS prices for the market five yearly maturities one can reverse engineer the 

equivalent no-arbitrage forward prices for the same maturities. The equivalent fair property 

forward prices are derived daily from 4 February until 7 July 2009, with maturities matching the 

futures contracts maturities. The final engineered fair prices of property forwards are illustrated 

in Figure 3. The descriptive moments of the differences between forward and futures prices on 

IPD commercial index are also provided in Table 1. On average, the differences for the first 

three maturities are positive, while for the fourth and fifth maturities they are negative. 

INSERT FIGURE 3 HERE 
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3.2 Testing Methodology 

First, we test whether the difference between the market TRS equivalent forward prices and 

market futures prices is significantly different from zero. If this hypothesis is rejected, then in the 

second stage a series of models and estimation methods are employed for the terms on the right 

hand side of the fundamental relationship given by (1). The aim in the second stage is to decide 

on the capability of various models to appropriately capture the dynamics of the index S and the 

discount factor D. 

For the first stage analysis, we run the following regression model for each maturity date Ti, 

  1 2 5i , , ..., : 

      0 0α β εi i i i tiF t ,T f t ,T  (16) 

(with Ti  fixed for each of the five time series regressions) and test whether α0i = 0 and β0i =1. If  

this null hypothesis cannot be rejected, then one can conclude that the difference between 

forward and futures prices is due to  noise. If, however, the null is rejected, we then proceed to 

the second stage of our analysis. The same econometric analysis described above from a times 

series point of view, can also be performed using panel data. Using panel data has a series of 

advantages.10 Firstly, it enables the analysis of a larger spectrum of problems that could not be 

tackled with cross-sectional or time series information alone. Secondly, it generally results in a 

greater number of degrees of freedom and a reduction in the collinearity among explanatory 

variables, thus increasing the efficiency of estimation. Furthermore, the larger number of 

observations can also help alleviate model identification or omitted variable problems. 

The regression equation in (16) is rewritten for our panel data as: 

      0 0α β εi i tiF t ,T f t ,T  (17) 

with   1 2 5i , , ...,  and   1 2 71t , , ..., . More variations of a panel regression exist, the simplest 

one being the pooled regression, described above in (17), which implies estimating the regression 

equation by simply stacking all the data together, for both the explained and explanatory 

variables. Furthermore, the fixed effects model for panel data is given by: 

    0 0α β α υi i i itF t ,T f t ,T     (18) 

                                                 
10 See also Baltagi (1995), Hsiao (2003). 
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where αi varies cross-sectionally (i.e. in our case it is different for each maturity date Ti), but not 

over time. Similarly, a time-fixed effects model can be formulated, in which case one would need 

to estimate: 

    0 0α β λ υi i t itF t ,T f t ,T     (19) 

where λt varies over time, but not cross-sectionally. The fixed effects model and the time-fixed 

effects model, as well as a model with both fixed effects and the time-fixed effects, will be 

analysed. One can test whether the fixed effects are necessary using the redundant fixed effects 

LR test. 

For the panel data random effects model the regression specification is given by: 

    0 0α β ε υi i i itF t ,T f t ,T     (20) 

where εi is now assumed to be random, with zero mean and constant variance 2

εσ ,  independent 

of υ it  and  if t ,T . Similarly, a random time-effects model can be formulated in the context of 

this paper as: 

    0 0α β ε υi i t itF t ,T f t ,T     (21) 

Again, random effects and random time-effects models, as well as a two-way model which allows 

for both random effects and random time-effects, can be estimated. Furthermore, it is important 

to test whether the assumption that the random effects are uncorrelated with the regressors is 

satisfied. 

For the second stage analysis we shall employ several models for the dynamics of the IPD index 

S. If the analysis is conditioned on knowing the bond prices, the RHS of identity  (1) can be 

expressed as: 

 
    

  
 

 
   

Q

t Q

tQ

t

cov S T ,D t ,T S t
E S T

E D t ,T B t ,T
 (22) 

Based on (1) and (22), it is evident that for our testing purposes the following regression is 

useful: 



13 
 

    
 

 
  

 

α β

m

Q

t ,m t ,m

f t ,T

S t
F t ,T f t ,T E S T u

B t ,T

 
     
 
  

 (23) 

and test whether α = 0 and β =1, for each model m. For each model m, failing to reject the null 

hypothesis implies that this particular model is suitable for describing the dynamics of the 

underlying IPD index. 

For a more comprehensive insight, we also consider a model for the interest rates that will lead 

to stochastic discount factors. In this paper, we assume a Vasicek one-factor model that is 

employed in conjunction with all models for the IPD index. Under this set-up we run the 

following regression: 

    
    

  
   α β

Q

t ,m

t ,mQ

t ,m

cov S T ,D t ,T
F t ,T f t ,T u

E D t ,T
 (24) 

where again m is the model index, and the test whether α = 0 and β = 1 is for each model m. If 

we fail to reject the null hypothesis, we then conclude that the model in question is suitable for 

describing the dynamics of S and D.  

Upon estimation of the model parameters, including the market price of risk (vector) η, as 

described in previous sections, we can fit the regressions given in (23) and (24). The competing 

models and methods of estimation are compared with respect to whether  β is significant and 

also considering the R2 measure of goodness-of-fit. 

 

4. Calibration of the models 

In order to be able to use the models enumerated in the preceding section we have to first 

calibrate their parameters. The parameters of the continuous time models specified in (3) and 

(11)-(12) can be estimated from the monthly log prices on the IPD index, observed over the 

period between December 1986 and January 2009,  and totalling 266 historical observations. The 

estimates then will be carried forward for analysing the differences between the forward and 

futures on IPD starting from February 2009. 
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4.1 Maximum Likelihood Estimation 

 When feasible, parametric inference for diffusion processes from discrete-time observations 

should employ the likelihood function, given its generality and desirable asymptotic properties of 

consistency and efficiency (Phillips and Yu, 2009). The continuous time likelihood function can 

be approximated with a function derived from discrete-time observations, obtained by replacing 

the Lebesgue and Ito integrals with Riemann-Ito sums. Remark that this approach gives reliable 

results only when the observations are spaced at small time intervals. When the time between 

observations is not small the maximum likelihood estimator can be strongly (upward) biased in 

finite samples.11  

We first de-trend the log price data by estimating the regression: 

   0μ μ
k kt k tp t u  (25) 

and subsequently work with the residuals from this equation, where k = 1, 2, …, 266  and 

  τkt k , with 
1

τ
12

 for monthly returns. 

The (exact) discretization of equation (3) leads to: 

 


 
1

ε
k k kt t tu cu  (26) 

where   γτc exp and     


  
1

ε σ γ
k

k

k

t

t k
t

exp t s dW s ;   
 

  
 

2σ
ε 0 1 2γτ

2γkt
N , exp .   

Maximum likelihood estimation of the discrete-time model in (26) gives12   0 995086c . and the 

standard deviation of ε
kt
as 0.011.  

The exact discretization of the two-factor model given by (11)-(12) is: 

 
 



   

  

1 1

1

α β φ ε

α β ε

k k k k

k k k

t q q t t q ,t

t r r t r ,t

q q r

r r
 (27) 

                                                 
11 Further discussion is given in Dacunha-Castelle and Florens-Zmirou (1986), Lo (1988), Florens-
Zmirou(1989), Yoshida(1990) and Phillips and Yu (2009) 
12 To check the stability of the parameter estimates, the estimation above is repeated using a larger 
sample, namely Dec 1986 to Oct 2010, with an increased sample size of 287 monthly observations. The 
parameter estimates do not change much. 
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where, for reasons of space, the expressions for the parameters as well as the distribution of the 

error terms in (27) are only given in Appendix B.  

4.2 Alternative estimation methods: Martingale estimation and Markov Chain Monte Carlo (MCMC) 

Lo (1988) argued that maximum likelihood estimation does not produce consistent estimates for 

the parameters of the continuous time model, when a discrete data sample is used. Two 

alternative estimation techniques that are applied here in order to circumvent this problem are 

the martingale estimation method described in Bibby & Sorensen (1995) and Markov Chain 

Monte Carlo (MCMC) methodology (see Tsay, 2008).  

Bibby and Sorensen (1995) have overcome this difficulty by developing a martingale estimating 

function estimator. A consistent estimator cannot be obtained from the discrete approximation 

of the likelihood function L because the associated pseudo-score function is biased. This bias is 

directly related to the time between observations being sizeable. The methodology proposed by 

Bibby and Sorensen (1995) – briefly described in Appendix D-  compensates the pseudo-score 

function in order to obtain a martingale. Their estimator is consistent and asymptotically normal.  

Following example 2.1 in Bibby and Sorensen (1995) and using previously defined notation, the 

estimator resulting from the martingale estimating function for the mean reversion parameter γ 

is: 

 
1

1

266

1

266
2

1

1
γ

τ

k k

k

t t
k

t
k

q q
ln

q














 

provided that the numerator is positive. It can be shown that this estimator is equal to the 

maximum likelihood estimator for the case when the volatility parameter σ is known. 

Since the martingale approach is not suitable for deterministic time trending processes, we only 

apply it for models mean reverting towards a constant threshold. The parameters obtained with 

this method are 0μ 0.3382 γ 0.0443 σ 0 01. . These values will feed into formula (8) and lead 

to model futures prices.  

MCMC techniques13 are based on a Bayesian inference theoretical support and offer an elegant 

solution to many problems encountered with other estimation methods, at the cost of 

computational effort. The main advantage of employing this type of inferential mechanism is the 

                                                 
13 For an excellent introduction see Tsay (2010). All MCMC inference in this paper has been produced with 
WinBUGS 1.4, from a sample of 100,000 iterations after a burn-in period of 500000 iterations. 
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capability to produce not only a point estimate but an entire posterior distribution for parameters 

of interest. Selecting various statistics from this distribution provides a more informed view on 

the plausible values of the parameters. Hence, for estimation purposes we select the mean, the 

2.5% quantile and the 97.5% quantile of the posterior distribution of the mean reversion 

parameter. The estimates for the discretized version of the mean-reverting model given in (5) are 

reported in Table 3. One great advantage of the MCMC approach is that all parameters are 

estimated easily from the same output without additional computational effort.   

 

4.3 The Calibration of the Market Price of Risk 

To calibrate the market price of risk η, we follow standard practice and minimize the mean 

squared error function; for the univariate model we have: 

     
5 2

1η

η η
t

*

t i univ t i
iR

arg min f t ,T f , t ,T


       (28) 

where  if t ,T represents the market futures price and  ηuniv t if , t ,T  is the theoretical futures 

price at time t for maturity iT . This optimization exercise is performed for each day in our 

sample and for each of the estimation methodologies described above. The resulting time series 

for the market price of risk, for each set of estimates are given in Figure 4.14 

INSERT FIGURE 4 HERE 

All parameter estimates can be determined now and then the theoretical model can be used for 

producing property futures prices. 

For the bivariate model, to calibrate the market price of risk vector   1 2η η 'η , we solve: 

     
2

5 2

1

ηi bi var t i
iR

arg min t ,T , t ,T


     
η

η
t

t g g  (29) 

where       
'

i i it ,T f t ,T r t ,Tg are the observed futures prices and the interest rates 

obtained from observable bond prices, respectively. For clarity, 

                                                 
14 For the ML estimation we also investigate the calibration of a surface for the market price of risk, 
where we now allow η to vary across maturities as well as across time. The results are depicted in Figure 
5. 
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      ηbi var t i bi var i bi var i, t ,T f t ,T r t ,T 'g are their model counterparts, as given in  (15) and 

(13), respectively. 

Table 2 gives a list of the models investigated in this paper with various methods of estimation. 

In Table 3 we report the parameter estimation results for these models based on our data. 

INSERT TABLE 2 HERE 

INSERT TABLE 3 HERE 

5. Empirical Analysis 

Our empirical analysis is divided into a part related to plain tests of the market differences 

between forward and futures prices on IPD index and a more refined analysis looking at several 

models for the underlying IPD index dynamics, coupled with a model for interest rates, but also 

considering several estimation methods. 

5.1  Model-free analysis 

Having available both series of forward and futures prices allows us to test directly whether the 

forward – futures difference  time series diverges significantly away from zero. 

Before running the time-series regressions in (17-22) we test whether the forward and futures 

price series are stationary using the Augmented Dickey-Fuller (ADF) test. The results are 

reported in Table 4. 

INSERT TABLE 4 HERE 

As we could see from the Table 4, most of the ADF results show that the forward series for the 

first, second, third, and fifth maturity dates are non-stationary while the forward series for the 

fourth maturity date is stationary at 5% significance level. In addition, the ADF test indicates that 

the futures series for all maturity dates are non-stationary. Furthermore, we also investigated the 

stationarity of the first differenced data. According to Table 4, the forward and futures series for 

all maturity dates are stationary in the first differences. 

Since most of the data is found to be non-stationary in levels and stationary in the first 

differences, we perform the remaining analysis on the first differenced data. We test H0: α0i = 0 

and β0i =1 vs. H1: α0i≠ 0 or β0i≠1, using an F-test and the results could be found in the Table 5. 

INSERT TABLE 5 HERE 
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The F-test results presented in Table 5 show that the null hypothesis for all maturity dates could 

be rejected at 1% significance level. We could conclude that the difference between forward and 

futures is not just a noise. 15 The same conclusion is reached if we analyse the values of the t-

statistics for the forward-futures differences reported in Table 6. 

INSERT TABLE 6 HERE 

 

Panel Stationarity tests 

Levin and Lin (1993), Levin, Lin and Chu (2002), Im, Pesaran and Shin (1997) and Maddala and 

Wu (1999) have developed unit root tests for panel data16. The results of these tests are reported 

in Table 7. 

INSERT TABLE 7 HERE 

As it was the case with the time series data, the panel data is non-stationary in the levels, 

however, the first differenced data is stationary and hence we continue our analysis using the first 

differences. To choose an appropriate specification for our panel regression, we first test 

whether the fixed effects are necessary using the redundant fixed effects LR test. The results of 

this test are reported in Table 8. 

INSERT TABLE 8 HERE 

From the test results reported in Table 8, it appears that a model with fixed time effects only is 

most supported by our data. Furthermore, we also investigate whether a random effects model is 

appropriate using the Hausman test; the results of this test are also reported in Table8.  

Based on these results, we arrive at the conclusion that the random effect model is to be 

preferred in this case. 

Next, we compute the F-test statistic for multiple coefficient hypotheses using the panel 

regression random effect specification; the results are reported in Table 9. 

INSERT TABLE 9 HERE 

                                                 
15 In addition, we also investigate the diagnostic statistics for these regressions and report the Durbin-Watson test 
statistic results in Table 5. We note that for all but the fifth maturity date there is no autocorrelation in the 
regressions errors. 
16 For a description of the tests, see Hsiao (2003), p. 298-301. 
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According to Table 9, we could see that the F-values are significant at 1% level. We could 

strongly reject the null hypothesis (H0: α0 = 0 and β0 =1) and conclude that the differences 

between forward and futures are not just noise in the panel data.17  

5.2 Model-based analysis18 

From a financial economics point of view, it has been established that even if the interest rates 

are constant then futures prices can differ from the associated forward prices. Assuming that 

interest rates are stochastic leads directly to the conclusion that the two series will diverge 

significantly over time. In this paper we would like to pose and answer the question, “which 

model and estimation method” most likely support the observed market differences. 

Furthermore, an additional level of complexity is generated from employing panel data tests. 

Tables 10 and 11 summarize the results of our model comparison, for the time series and panel 

data, respectively. The martingale method and the MCMC methods perform better than the ML 

method. The R-square seems to increase with maturity overall hinting that stationarity problems 

may be more acute for near maturities. Please note that since maturities are fixed in the calendar 

by the market, the time to maturity of our series gets progressively smaller, across all five 

contracts.  

INSERT TABLE 10 HERE 

INSERT TABLE 11 HERE 

Our results in Table 11 reveal that for panel data analysis all models employed here are well 

specified and the beta t-test is highly significant. The univariate model coupled with maximum 

likelihood estimation is by far the best approach, the R-squared being close to 93%. 

6. Conclusions 

In this paper we analyse the differences between forward and futures prices on a new asset class,  

commercial real-estate, using a battery of models, estimation methods and tests. The forward 

prices have been reversed engineered from total return swap rates using standard market 

practice. Testing is done on individual time series data but also in a panel data framework.  

                                                 
17 In addition, the values of Durbin Watson test show that there is no autocorrelation in the panel regression errors. 
18 The futures and engineered forward prices are given as percentages of the underlying IPD index S(t). In order to 
be able to conduct the testing in this section, we need to first obtain the transformed futures and forward prices as 

follows:    
 

100
i i

S t
f t ,T f t ,T and    

 
100

i i

S t
F t ,T F t ,T . 
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Our results provide evidence of significant differences between the implied forward and futures 

prices for the IPD UK index. One possible explanation could be the period of study, several 

months during 2009, in the aftermath of the subprime crisis. 

Although our overall conclusion is that, for the period 4 February 2009 to 7 July 2009, the 

forward prices were different from futures prices, there is substantial variation in the strength of 

these results across contract maturities, methods of estimation and testing frameworks. Given 

the significance of our results even on a model-free basis, we organised a model race that best 

explains the relationship between synthetic forward prices derived from daily total return swap 

rates and the daily futures prices. The models were generated from using various methods of 

estimation for the mean-reverting OU continuous time process assumed for the underlying IPD 

index. Our models provided significant explanatory power for the relationship between forward 

and futures prices on commercial real-estate index in UK but the analysis of the error terms 

shows that there is more that can be explained. From a theoretical point of view our study can 

be expanded to two-factor models as detailed in the paper. Unfortunately, due to lack of space 

we could not report also the results from the two-factor models subset, but we hope to do that 

in the very near future. 
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Appendices 

Appendix A: The Derivation of the Risk Neutral Dynamics for the Bivariate Process 

Here we work directly with the de-trended process {q(t)}. In order to obtain the risk neutral Q-

dynamics of the system 

 
            γ λ σ Sdq t q t r t dt dW t  (A1) 

       δ μ σr r rdr t r t dt dW t    (A2) 

where      ρS rdW t dW t dt  we first re-write the system under the physical measure P, but 

depending solely on the non-correlated Brownians19 W1 and W2, where, for any t 

    

   

 
   



 
 

1

2
2 2

ρ

1 ρ 1 ρ

S

r S

W t W t

W t W t
W t

    (A3)

 

Then: 

         2

1 2ρ 1 ρrW t W t W t  (A4) 

Thus, system (A1-A2) can be re-written: 

 
 

 

   

 

 

 

10

2
2

σ 0γ λμ γ μ μ

0 δδμ ρσ σ 1 ρr r r

dp t p t dW tt
dt

dr t r t dW t

              
                               

 (A5) 

The risk neutral Q-dynamics of this system is given by  

 

 

 

   

 

 

 

10

2
2

1

2

2

σ 0 η γ λμ γ μ μ

η 0 δδμ ρσ σ 1 ρ

σ 0

ρσ σ 1 ρ

r r r

Q

Q

r r

dp t p tt
dt

dr t r t

dW t

dW t

             
                          

   
    

      

 (A6) 

The above system can be solved and then we get: 

            


          1 1 δ σ δ
t

Q

r r
v s

r t C r s C exp t s exp t v dW v ,  (A7) 

                                                 
19 See also proposition 4.19 from Bjork (2009). 
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with  2

1 1 2

σ
μ ρη 1 ρ η

δ

r
rC     , and         2

1 2ρ 1 ρQ Q Q

rdW t W t W t . 

 

Appendix B: The Discretization of the Bivariate Model 

The complete specification of the discretization for the two-factor model used in the paper is 

given as  

 



   

  

1 1

1

α β φ ε

α β ε

k k k k

k k k

t q q t t q ,t

t r r t r ,t

q q r

r r
    (B1) 

where  

     
 

        
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    

 
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

  
1

ε σ δ
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t

r ,t r k r
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exp t s dW s .

 

We also notice that: 

 
λ

α α μ φ
γ

q r r 

   (B2)

 

The error vector is bivariate normal, with covariance matrix:20  

 
   

   

 
 
 
 

ε ε ε

ε ε ε

k k k

k k k

q ,t q ,t r ,t

q ,t r ,t r ,t

var cov ,

cov , var
 

                                                 
20 Lo and Wong (1995) obtained the same error covariance matrix although their model is not the same as ours. 
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where:

    
 

       
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     
      

 
 

     
  

   
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2 1 γ δ τ1 2γτ1 2δτλσσ
ε 1 2γτ

2γ 2δ 2γ γ δγ δ

1 γ δ τ 1 2γτ2ρλσσ

γ δ γ δ 2γ

k

r
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expexpexp
var exp

exp exp

           (B3)

 

       
2σ

ε 1 2δτ
2δk

r
r :tvar exp

 (B4)
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  
    

             

2 1 γ δ τ1 2δτλσ ρσσ
ε ε 1 γ δ τ

γ δ 2δ γ δ γ δk k

r r
q ,t r ,t

expexp
cov , exp  

           (B5) 

(B3) and (B5) represent a system of two equations in two unknowns, σ and ρ. 

 

Appendix C: Maximum Likelihood Estimation  - Continuous Time Models Parameters in terms of the Discrete 

Time Models Parameters 

Univariate Model 
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Bivariate Model 
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Appendix D: Martingale Estimation 

If 2 nX , X ,..., X    is a discrete observation sample from the path of the diffusion 

          φ σ φdX t b X t , dt X t , dW t 
 (D1)

 

 where φ is a parameter vector.  

Then, denoting    φ 0φF x, E X |X x  , Bibby and Sorensen (1995) build the estimating 

function 
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 (D2)

 

 

This is a zero-mean martingale and thus it does not matter whether the diffusion coefficient σ 

depends on the parameter or not. 
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Figure 1 IPD Total Return Swap Rates (mid prices)  

 

Notes: The plotted data is from 4 February until 7 July 2009 for the five maturity dates fixed in 
the market calendar, for the period of study. The total return swap rates are given as a fixed rate 
and not as a spread over Libor. A negative total return swap rate implies that the underlying 
commercial property market will depreciate over the period to the horizon indicated by the 
maturity of the contract. 
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Figure 2 Eurex Futures Prices 

 

Notes: The plotted data is from 4 February until 7 July 2009 for the five maturity dates fixed in 
the market calendar. Futures prices are given on a total return basis so a futures price of 110 for 
December 2012 implies that the market expects a 10% appreciation of the commercial property 
in UK at this horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

70.00 

80.00 

90.00 

100.00 

110.00 

120.00 

Maturity Date 31-Dec-09

Maturity Date 31-Dec-10

Maturity Date 31-Dec-11

Maturity Date 31-Dec-12

Maturity Date 31-Dec-13



31 
 

Figure 3 The Fair Prices of Property Forwards  

 

Notes: The plotted data is from 4 February until 7 July 2009 for the five maturity dates fixed in 
the market calendar, for the period of study. The fair property forward prices are reversed 
engineered from the corresponding portfolio of total return swaps. 
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Figure 4 Market Price of Risk 

 

Notes: The figure plots the market price of risk for IPD commercial property index under the 
univariate OU model, with underlying model parameters estimated using maximum likelihood 
(ML) in panel (a), martingale estimation in panel (b), and Markov Chain Monte Carlo (MCMC) in 
panels (c)-(e), with posterior mean (panel c), posterior 2.5th quantile (panel d) and posterior 97.5th 
quantile (panel e) parameter estimates, using monthly log prices on the IPD index, observed over 
the period between December 1986 and January 2009. The market price of risk is fitted by 
minimising the mean squared error function, which measures the mean squared distance 
between the market and model futures prices, for each of the 71 days in the sample and across 
the five futures maturities. The IPD futures data is from 4 February until 7 July 2009, for the five 
maturities, namely December 2009, December 2010, December 2011, December 2012 and 
December 2013. 
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Figure 5 Market Price of Risk 

 

 

Notes: The figure plots the market price of risk surface for IPD commercial property index and 

for the univariate OU model, with underlying parameters estimated using maximum likelihood 

(ML), using monthly log prices on the IPD index, observed over the period between December 

1986 and January 2009. The market price of risk is fitted by minimising the mean squared error 

function, which measures the mean squared distance between the market and model futures 

prices, for each of the 71 days in the sample and each of the five futures maturities. The market 

price of risk is thus assumed vary both across time and across futures contracts maturities. The 

IPD futures data is from 4 February until 7 July 2009 for the five maturities, namely December 

2009, December 2010, December 2011, December 2012 and December 2013. 
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Table 1. Descriptive Statistics for total return swap rates, Eurex futures prices and the forward-

futures differences. 

 

Maturity Dates 

 
31-Dec-09 31-Dec-10 31-Dec-11 31-Dec-12 31-Dec-13 

 

Total Return Swaps 

Mean -0.178 -0.0971 -0.0389 -0.0056 0.0138 

standard deviation 0.0217 0.0548 0.0521 0.0401 0.0336 

Skewness -0.6925 -1.3581 -1.4446 -1.4177 -1.3889 

Kurtosis -0.5131 0.1383 0.2633 0.2135 0.1585 

 

Futures prices 

Mean 81.1982 94.275 106.1732 111.7035 113.5915 

standard deviation 2.6558 10.6358 5.1369 1.2792 3.7762 

Skewness -0.0992 -0.4889 -0.5411 0.164 -0.2771 

Kurtosis -1.5313 -1.7844 -1.6426 -0.6302 -1.6544 

 

Forward – Futures Differences 

Mean 1.1018 4.2432 2.0765 -1.599 -3.7103 

Standard Deviation 1.3846 7.2574 3.7344 1.0573 3.0863 

Kurtosis 0.3093 0.9912 0.8006 0.0824 -1.6454 

Skewness 1.2702 1.6562 1.5582 0.3179 0.2274 

 

Notes: The descriptive statistics are of the total return swap rates, futures prices and forward-

futures differences on IPD UK All Property index. Daily mid prices are used for calculation for 

the period 4 February 2009 to 7 July 2009 for the five market calendar maturities, namely 

December 2009, December 2010, December 2011, December 2012 and December 2013. The 

forward prices used here are the synthetic fair prices derived from total return swap rates, 

synchronous with the futures prices. 
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Table 2 Models 

Name Model Estimation method 

univ_ML univariate time-trending OU: 

     γ σdq t q t dt dW t    

exact maximum likelihood 

univ_mart martingale estimation 

univ_MCMC_mean Markov Chain Monte Carlo (MCMC), mean parameter estimates 

univ_MCMC_2.5q MCMC, using the 2.5th quantile of the distribution of estimates 

univ_MCMC_97.5q MCMC, using the 97.5th quantile of the distribution of estimates 

bivar_ML bivariate  time-trending OU: 

       

      

   

γ λ σ

δ μ σ

ρ

S

r r r

S r

dq t q t r t dt dW t

dr t r t dt dW t

dW t dW t dt

     

  



 

exact maximum likelihood 

biv_MCMC_mean MCMC, mean parameter estimates 

biv_MCMC_2.5q MCMC, using the 2.5th quantile of the distribution of estimates 

biv_MCMC_97.5q MCMC, using the 97.5th quantile of the distribution of estimates 

Notes: q(t) is the de-trended log price process for the underlying S(t), the IPD UK commercial property price index:     p t ln S t ; 

       0μ μp t q t t
. r(t) denotes the short interest rate. For both models, the futures price is obtained as:

    00 Q

m ,mf ,T E S T
where m = univ 

or bivar, for the two models, respectively, Q is the martingale pricing measure, and T is the  futures maturity time.
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Table 3 Parameter Estimates 

Parameter 

\Model 

univ_ML univ_mart univ_MCMC_mean univ_MCMC_2.5q univ_MCMC_97.5q 

μ0 - 0.0338 4.221 1.35 4.463 

μ 0.4117 - 0.3121 0.2657 0.7051 

γ 0.0591 0.04427 1.559 0.1892 1.979 

σ 0.0384 0.01 0.0178 0.0131 0.0238 

η 

(average) 

-37.2076 -234.6772 -962.8572 -259.2317 -944.3792 

Notes: Parameter estimates for the univariate OU model, obtained using likelihood (ML) (column 
2), martingale estimation (column 3), and Markov Chain Monte Carlo (MCMC) (columns 4-6), 
with mean (column 4), 2.5th quantile (column 5) and 97.5th quantile (column 6) parameter 
estimates. The data used estimating the model parameters with these alternative estimation 
methods contains monthly log prices on the IPD index, observed over the period between 
December 1986 and January 2009, and totalling 266 historical observations. 

 

Table 4 ADF Test for the Forward and Future Prices  

Maturity Date 

Forward Futures 

Level 
First 

Differences 
Level 

First 

Differences 

31 December 2009 -1.3453 -8.3646*** -0.8098 -5.1662*** 

31 December 2010 -1.9185 -8.4575*** -1.3019 -8.3168*** 

31 December 2011 -2.0106 -8.6799*** -1.3278 -4.3724*** 

31 December 2012 -3.4368** -5.4320*** -2.3581 -5.9891*** 

31 December 2013 -0.9618 -6.4863*** -1.2087 -12.1882*** 

Notes: Augmented Dickey-Fuller (ADF) test results for the UK IPD commercial property index 
forward and futures prices. The test is performed for both the data in levels as well as for the 
first differenced data. The optimum number of lags used in the ADF test equation is based on 
the Akaike Information Criterion (AIC). *, **, and *** denote significance at the 10%, 5% and 
1% level respectively. The data is from 4 February until 7 July 2009 for the five maturity dates 
given in the first column. 
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Table 5 F-Test for Time Series Data 

Maturity Date F-test 
Durbin-Watson 

Statistic 

31 December 2009 83.5072*** 1.9905 

31 December 2010 49.4309*** 2.0595 

31 December 2011 23.8320*** 2.0613 

31 December 2012 31.1717*** 2.2589 

31 December 2013 158.2534*** 2.7247 

Notes: F-Test and Durbin Watson statistic results for the regression in the equation (16) for the 
property forward and futures data from 4 February until 7 July 2009 for the five maturity dates 
given in the first column. For the F-test, the null hypothesis is that the difference between the 
forward and futures prices is just noise (i.e. α0i = 0 and β0i =1). *, **, and *** denote significance 
at the 10%, 5% and 1% level respectively.  
 

Table 6 T- statistics for the Differences between Forward and Futures prices  

 
Maturity Dates 

31-Dec-09 31-Dec-10 31-Dec-11 31-Dec-12 31-Dec-13 

t-statistic 6.7060*** 4.9265*** 4.6852*** -12.741*** 10.1291*** 

Note: The values of the t-test are computed for the differences between forward and futures 
prices on the UK IPD commercial property index, using data from 4 February until 7 July 2009 
for the five maturity dates given in the second row.  *, **, and *** denote significance at the 
10%, 5% and 1% level respectively. 

 

Table 7 Panel Unit Root Tests  

Method 
Forward Futures 

Level First Differences Level First Differences 

Levin, Lin & Chu t* -1.8292 -6.7737*** -0.7206 -4.0345*** 

Im, Pesaran & Shin 

W-stat 
-1.1578 -10.4686*** 0.3880 -8.3918*** 

Note: Results for the panel unit root tests of Levin, Lin and Chu (2002) and Im, Pesaran and Shin 
(2003) for forward and futures price data on the UK IPD commercial property index, from 4 
February until 7 July 2009 for five maturity months, namely December 2009, December 2010, 
December 2011, December 2012 and December 2013.*, **, and *** denote significance at the 
10%, 5% and 1% level respectively 
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Table 8 Tests for determining the most suitable panel regression model  

Test Value 

Redundant Fixed Effects Test  

Cross-section F 1.0925 

Cross-section Chi-square 5.5181 

Period F 2.2062*** 

Period Chi-square 154.1939*** 

Cross-Section/Period F 2.1450*** 

Cross-Section/Period Chi-square 157.7444*** 

Hansen Test  

Cross-section random 3.0341* 

Period random 0.0003 

Cross-section and period random 0.1690 

 

Notes: The redundant fixed cross-section effects test has a panel regression with fixed time 
(period) effects only under the null. Both the F and the chi-square version of the test are 
reported. The redundant fixed time (period) effects has a panel regression with fixed cross-
section effects only under the null. Both the F and the chi-square version of the test are reported. 
For the random effects test (i.e. Hansen test) the null hypothesis in this case is that the random 
effect is uncorrelated with the explanatory variables. The panel data is from 4 February until 7 
July 2009 for five maturities, namely December 2009, December 2010, December 2011, 
December 2012 and December 2013.*, **, and *** denote significance at the 10%, 5% and 1% 
level respectively. 

 

 

 

Table 9  The F-test for Panel Data  

Test Statistic Value 

F-statistic 237.3960*** 

Durbin Watson Statistic 2.1419 

Notes: F-test and Durbin Watson statistic results for the regression in the equation (20) for the 
property forward and futures panel data from 4 February until 7 July 2009, using the cross-
section random effects specification. For the F-test, the null hypothesis is that the difference 
between the forward and futures prices is just noise (i.e. α0 = 0 and β0 =1).*, **, and *** denote 
significance at the 10%, 5% and 1% level respectively. 
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Table 10 Model Comparison – Time Series Data 

Test\Model univ_ML univ_mart univ_MCMC_mean univ_MCMC_2.5q univ_MCMC_97.5q 

1st Maturity 

F-test 120757.2*** 122000.3*** 112810.4*** 121757.8*** 99747.38*** 

t-test for β 1.4369 1.607 -0.8494 1.5724 -1.9758* 

R_squared 0.0291 0.0361 0.0103 0.0346 0.0535 

2nd Maturity 

F-test 5946.6*** 6108.451*** 2705.565*** 6043.822*** 411.4135*** 

t-test for β 2.0079** 2.1145** 0.5759 2.0585** 0.5991 

R_squared 0.0552 0.0608 0.0048 0.0579 0.0052 

3rd Maturity 

F-test 30397.9*** 36595.58*** 4200.665*** 31643.03*** 63.6275*** 

t-test for β t-

test for β 

4.2573*** 5.1767*** 4.2845*** 4.3118*** 15.7831*** 

R_squared 0.208 0.2797 0.2101 0.2123 0.7831 

4th Maturity 

F-test 216988.5*** 360635.3*** 2426.505*** 214077.2*** 2354.060*** 

t-test for β 2.2969** 4.5343*** 7.6797*** 0.9275 8.1801*** 

R_squared 0.071 0.2296 0.4608 0.0123 0.4923 

5th Maturity 

F-test 21886.5*** 13565.37*** 24054.33*** 14288.12*** 2822.825*** 

t-test for β 31.9967*** 39.9288*** 17.6248*** 25.8627*** 15.4195*** 

R_squared 0.9369 0.9585 0.8182 0.9065 0.7751 

Notes: For the regression in (23), we report the value of the F-statistics for the null α = 0 and β 
=1, the value of the t-statistic for the beta coefficient and the R-squared of the regression, where 
the RHS, independent variable is based on the univariate OU model with parameters estimated 
using maximum likelihood (ML) in column 2, martingale estimation in column 3, and Markov 
Chain Monte Carlo (MCMC) in columns 4-6, with mean (column 4), 2.5th quantile (column 5) 
and 97.5th quantile (column 6) parameter estimates. The data used for fitting the model 
parameters with these alternative estimation methods contains monthly log prices on the IPD 
index, observed over the period between December 1986 and January 2009, and totalling 266 
historical observations. The data used for the testing reported in this table is from 4 February 
until 7 July 2009 for five maturities, namely December 2009, December 2010, December 2011, 
December 2012 and December 2013 and the tests are performed for all five time series, 
corresponding to the five maturities. *, **, and *** denote significance at the 10%, 5% and 1% 
level respectively. 
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Table 11  Model Comparison – Panel Data 

Test\Model univ_ML univ_mart univ_MCMC_mean univ_MCMC_2.5q univ_MCMC_97.5q 

F-test 21886.5*** 66887.84*** 26358.31*** 64035.43*** 10284.18*** 

t-test for β 31.9967*** 9.9151*** 11.3375*** 10.6135*** 6.8171*** 

R_squared 0.9369 0.2178 0.2669 0.2419 0.1163 

Notes: For the regression in (23), we report the value of the F-statistics for the null α = 0 and β 
=1, the value of the t-statistic for the beta coefficient and the R-squared of the regression, where 
the RHS, independent variable is based on the univariate OU model with parameters estimated 
using maximum likelihood (ML) in column 2, martingale estimation in column 3, and Markov 
Chain Monte Carlo (MCMC) in columns 4-6, with mean (column 4), 2.5th quantile (column 5) 
and 97.5th quantile (column 6) parameter estimates. The data used for fitting the model 
parameters with these alternative estimation methods contains monthly log prices on the IPD 
index, observed over the period between December 1986 and January 2009, and totalling 266 
historical observations. The panel data used for the testing reported in this table is from 4 
February until 7 July 2009, for five maturities, namely December 2009, December 2010, 
December 2011, December 2012 and December 2013 *, **, and *** denote significance at the 
10%, 5% and 1% level respectively. 

 

 


